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The proliferation of increasingly powerful and complex multiprocessor

systems has made fault-tolerant design a necessity. Optimizing fault tol-

erance in multiprocessor systems is a very difficult task because it involves

multi-dimensional tradeoffs. The system architecture, the computation struc-

ture, the implementation technology, the frequency, duration and location of

faults, and many other factors all have certain impact on the effectiveness of

a particular fault tolerant approach. In our research, we have attempted to

look at different areas in fault tolerance and have tried to integrate them un-

der one umbrella. A unified approach to fault-tolerance is perhaps the only

solution that may succeed for the difficult task of redundancy management.

Such an approach covers design for fault tolerance, testing, reconfiguration

and recovery.

Our main focus in this research has been on efficient reconfiguration pro-
cedures. Previous works in this area are somewhat diverse and ad hoc, and

there is a lack of analytical studies to evaluate the existing fault tolerance

techniques and to guide future research. We have attempted to solve this

difficult problem by a graph theoretic approach. In our research, we have

introduced this approach and concentrated on the analysis and optimization
of fault tolerance in multiprocessor systems.

Specifically, a reconfiguration model that allows a faulted job to be re-

covered with minimum space and time overhead and without performance

degradation has been formally introduced [1]. This allows the execution of
jobs on a multiprocessor system with predictable behavior. Additionally,

eleven parameters have been precisely defined to facilitate the evaluation

of the fault tolerance of different multiprocessor systems for executing a

given set of target applications [1]-[3]. These parameters also allow the

quantitative comparison of various fault reconfiguration techniques so that

efficient algorithms can be developed. The graph theoretic approach used is

widely applicable to multiprocessor systems and applications with various

topologies. We have concentrated on two well-known systems, namely, the

mesh and the hypercube, and two frequently used computational structures,

namely, the path and the complete binary tree. Solutions and algorithms for

determining various optimization parameters have also been presented. Al-

gorithms that allow optimized job reconfiguration are also developed. More

importantly, we have studied the applications of the analytical approach

to the fault-tolerant design of multlprocessor systems. Our approach ex-

plores the inherent fault tolerance of multiprocessor systems and exploits

the topological relationship between the system architecture and the target

applications. Itence our approach not only leads to good reconfiguration



proceduresbut alsohelpsonein designingandselectingagoodarchitecture
for fault tolerancebasedon the requirementsof the target application.

Besidesstudyingfault reconfigurationschemeswehavealsodirectedour
efforts to fault recoveryapproaches.We haveattemptedto characterize
the utilization of fault recoveryin sucha way as to introduce minimum

performance degradation. In particular we have studied the conditions for

applicability of efficient low-cost fault recovery techniques, such as forward

recovery, to deterministic problems [4]. The approach we used for that

was to determine specific classes of applications that met those conditions.

More specifically, we have explored the natural redundancy existing in the

variables of these programs in order to recover from faults without the need

of extensive recomputation. Rather than roll back, due to the existence of

this naturally embedded redundancy, the state of a computation plagued by
faults from a defined set of faults can be utilized to reconstruct a correct

state from which the execution of the program can continue.

Any fault-tolerant approach cannot be complete without efficient test-

ing procedures to weed out faulty components after manufacture or during

the operation of the system. To accomplish this aim, a new concept called

topological testing has been introduced [5]. Topological testing uses graph
theoretic optimization methods such as the Traveling Salesman Problem,

the Chinese Postman Problem, coloring, covering, matching, partitioning

and path covering to minimize test time. The topological testing techniques

can be applied to test a system's behavior and its organization at each level

of the system's hierarchy, namely, circuit, logic, register transfer, instruction

and processor-memory-switch levels. Specifically, the topological testing ap-

proach is demonstrated by developing tests for the multistage interconnec-

tion network, the hypercube network and the mesh network [5]-[8]. Time

optimization for the testing of these networks gives very promising results

by taking advantage of inherent parallelism and removing test redundancy.

Considerable improvement in testing time is achieved by applying topolog-

ical testing techniques to the testing of these networks.

It has been observed that a lot of problems require efficient heuristics

for obtaining good solutions since they fall in the category of NP-complete

problems. Taking this fact in consideration we have developed a new hy-

brid algorithm technique for improved performance based on the idea of

mixing two or more algorithms [9]. This hybrid algorithm has an inherent

potential for parallelization and has been observed to obtain good results for

the Traveling Salesman Problem for which two heuristics namely Simulated

Annealing and Tabu Search were hybridized [10]. Comparison of the algo-



rithm with eachindividual algorithmindicatesconsistentlybetter results.
A similar approachtowardsparallelizinga singlealgorithm,wheremultiple
instancesof executionof the algorithmwith differentparametersaremixed,
hasalsoshownveryencouragingresults.

Our current researchhasbeendirectedtowardsintroducingfault tol-
erancein real-timesystems.Thesefault-tolerantreal-timesystems,called

responsive systems [11] are used for very critical applications, and are appli-
cable to NASA's future Space Station. Redundancy Management to obtain

fault tolerance in such system is a challenging task due to the additional con-
straints of real-time and criticality of application. Our approach is towards

a comprehensive design of such systems including specification, modeling

and design for redundancy management and recoverability. Our research in

1989/90 resulted in nine publications, three research reports and two book
chapters. We hope that our research will contribute to facilitating redun-

dancy management in NASA's distributed computing systems.
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ABSTRACT: We formalize and quantify various aspects of reliable computing with emphasis on

efficient fault recovery. The mathematical model which proves to be most appropriate is provided

by the theory of graphs. We have developed new measures for fault recovery and observe that the

value of elements of the fault recovery vector depend not only on the computation graph H and the

architecture graph G, but also on the specific location of a fault. In our examples we choose a

hypercube as a representative of parallel computer architecture, and a pipeline as a typical

configuration for program execution. We define dependability qualities of such a system with or

without a fault. These qualities are determined by the resiliency triple defined by three parameters:

multiplicity, robustness and configurability. We also introduce parameters for measuring the

recovery effectiveness in terms of distance, time, and the number of new, used, and moved nodes

and edges.

Key Words: Fault recovery, resiliency, multiprocessor systems, hypercube, pipeline



1 INTRODUCTION

Reliableandfault-tolerantdesignisbecomingincreasinglyimportantwith theever-growing

demandfor moresophisticatedandcomplexcomputersystems.Simplereliability evaluationsof

severalresearchandcommercialparallelsystemsindicatethatfault toleranceis becominga sine qua

non condition in any multiprocessor. In fact, parallel and distributed computers offer a unique

opportunity of trading performance for reliability. In order to accomplish that, sophisticated fault

detection, fault location, and fault recovery algorithms are required. Our objective is to introduce a

formal approach based on graph theory to fault recovery problems. Most previous works

concentrated on fault diagnosis (detection and location) [1, 2, 3, 4]. The study of fault recovery has

been relatively neglected. Very little has been accomplished with the notable exception of the work

by Yanney and Hayes [5]. Our objective is to formalize and quantify various aspects of reliable

computing and give examples of fault recovery of pipelines imbedded in hypercube architectures.

2 FAULT RECOVERY MODELS

In general, two problems occur: analysis and synthesis. In the first problem area, analysis, a

prescribed graph architecture such as a grid (mesh) or hypercube is given and all fault

considerations must be handled within that framework. On the other hand for a given set of

conditions to be realized, a synthesis problem necessitates the construction of an appropriate

architecture.

In an excellent pioneering work, Hayes [6] proposed a fundamental synthesis problem for

graphs: Given a job H, construct a supergraph G with the minimum possible number of additional

nodes and edges such that after the removal of any k nodes from G, the resulting subgraph still

contains H. The cases studied take H as a path, a cycle, or binary tree. A graph G with this property

is called k-fault-tolerant with respect to the job H.

Another problem of synthesis that we propose for both architecture and computation graph

models could be stated as follows: Find a graph G with a minimum number of additional nodes and
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edges,suchthataftertheremovalof anyk nodes,thereconfigurationtime is requiredto restorethe

original subgraphcorrespondingto ajob is minimized.

In analysistheproblemisdifferentandcanbedescribedasfollows. Let G bea givengraph

andlet H bea subgraphof G. Whenanodeu is removedfrom H, therearetwopossibilities:

EitherG - u containsanothersubgraphH" isomorphicto H or it doesnot. If it doesnot, thenthe

systemGis callednon-recoverable with respect to H and the node u. On the other hand, when

G - u does contain a subgraph H" isomorphic to H, we require the minimum cost (such as some

function of distance, time, or utilization of new resources) to produce such a subgraph H'. There is

often more than one way to map H onto H'. One or more of these ways will yield the required

minimum distance by the following procedure. The distance d (H,H',f) with respect to an

isomorphism f from H onto H', where f(v) = v', is equal to the sum of the distances in G of d(v,v3

for all the nodes v in H. Now we can precisely define the distance d (H,H3, namely, it is the

minimum of the distances d(H,H',f) taken over all isomorphisms f between H and H'.

Another interesting analysis problem pertinent to fault-tolerant computing can be stated as

follows. Given a graph G and a subgraph H, determine the maximum number of node-disjoint

embeddings of H onto G. We will call this parameter the multiplicity of H in G and denote it by

m=m(G,H). In graph theory [7], this is known as the node-disjoint packing number pac o (G,H) as

introduced in [8]. In [9] both pac 0 (Qn, Qm) and the corresponding edge-disjoint packing number

pacl (Qn,Qm) of subcubes in hypercubes are studied.

Our fault-tolerant computing philosophy in multiprocessors is that if the redundant resources

are available we should use them for the execution of a given job. When m = 2, we can effectively

detect any single fault by comparing the outputs of two jobs while for m > 3 we can mask a single

fault by voting on the outputs. This dynamic duplication or triplication could also be used for single

fault recovery by exploiting redundancy in time [10] where stages of a systolic FFT (Fast Fourier

Transform) array, say, can be executed on different processors each time. In this case the problem



canbestatedasfollows.

Given a labeledgraphG and a subgraphH, find multiple embeddingsof H onto G with

different labelsof G for eachnodeof H. The numberof suchexecutionsof a givenjob H in a

graphG wecall the robustness r = r(H,G) of an execution of a job H.

The same parameters m and r can be defined for a system in the presence of faults, and then

m becomes the number of embeddings of H onto G - u (when u corresponds to a faulty node)

exist, while r becomes the number of embeddings of H onto G - u having different labels of

G - u for each element of H. We denote these parameters m" and r'. Thus m" = m(H,G - u) and

r'= r(H,G - u).

Finally, the configurability c corresponds to the number of ways that a particular job H can

be configured or embedded in system G or on a subgraph of the system after the removal of a faulty

node u, i.e., c = c(G,H) is the number of different types of subgraphs of G, with respect to the

automorphism group of G. In other words, c(G,H) is the number of orbits in the group of G

modified to act on all subgraphs of G isomorphic to H as in Harary and Palmer [11]. After the

removal of the faulty node, we have c" = c(G - u,H). We will refer to (m, r, c) as the resiliency

triple of system (G,H) because it characterizes such fault-tolerant qualities of the system.

3 FAULT RECOVERY VECTOR (FRV)

We have just defined the resiliency triple for quantifying fault tolerance in systems with and

without faults. We have considered only a single fault, call it node u, in a job H embedded in a

system graph G. This will extend readily to multiple faults. We now introduce several parameters

in addition to the multiplicity m, the robustness r, and the configurability c which furnish various

optimization criteria for efficient fault recovery.

These parameters for a given recovery procedure involve distance, time, the number of new

nodes, the number of used nodes, the number of new edges, the number of used edges, and what

will be called the eviction order and eviction size.



d = distance

d = d(H,u,G) has already been defined above. It is the minimum of d(H,H'), which

was defined as _d(v,v') among all subgraphs H" of G isomorphic to H but not containing the

known fault, u.

t = time

t = t(H,u,G) is the maximum value of the terms d(v,v') in the above sum.

By recovery effectiveness we mean the distance, time pair (d,t).

v 0 = number of new nodes

v 0 is the number of new nodes that were added in order to configure the job H'

equivalent to H, the one that was at fault.

la0 = number of used nodes

_t0 is the number of nodes of G which were traversed while moving from faulty job

H to faultless job H" but do not appear in H u H'. These nodes are not incorporated in the resulting

subgraph of the recovered job.

v 1 = number of new edges

v 1 is to edges as v 0 is to nodes; it is the smallest number of new edges in the new

recovered job that were not used in the original faulty job.

l.t 1 = number of used edges

recovered job.

This number l.tI is simply the number of edges that are required for mapping the

These used edges enable the transfer of the data from H to H" and do not occur in
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H u I-I'.

Thequadrupletof parameters(v0, I.t0,Vl, I.tl) is calledtherecovery overhead.

e0 = eviction order

During a recovery procedure there are certain nonfaulty nodes which can remain in

their original locations in G. These are called the stationary nodes of this procedure in G - u. A

node which must be moved in order to reconfigure is called evicted as it is not stationary. We

define e 0 as the number of evicted nodes in any reconfiguration procedure of H in G - u.

e 1 = eviction size

This parameter is defined just by changing every word "node" above to "edge".

We now have eight invariants which we wish to minimize:

d, t;

It is convenient to

v 0, la0, v 1, I.tl; e0, el

separate these into three groups: the (d,t) pair determines the recovery

effectiveness, the node-edge vector (v 0, la0, Vl, I.tl) represents recovery overhead, and now the

eviction pair (e0, el) is called the relocation measure. The remaining invariants form the resiliency

triple (m, r, c) and can be used to evaluate the level of system fault-tolerance in the presence or

absence of faults.

The vector consisting of eight parameters obtained by concatenating the recovery

effectiveness (d,t), the recovery overhead (v0, 1.43,Vl, _tl) , and the relocation measure (e0, el) is

called the fault recovery vector (FRV). (As in any graph theoretical extremal problem, it is difficult

to optimize simultaneously with respect to all parameters, but it is conceivable that depending on the

system user requirements we can find optimal solutions with respect to some of the eleven

parameters listed above).

Although we have restricted the above formulation to the case of a single fault node u, all the

6



parametersextendatonceto moregeneralfaults. For example,theremightbea singlefault which

is anedge,or multiple faultswhich correspondto a setof nodes,a setof edges,or a mixed setof

nodesandedges.We illustratefault recoveryvectorsfor thespecialcasewhenG is ahypercube

Qn,H is apathPk with k nodes,andu is oneof thenodesof H.

4 FAULTS IN PIPELINESIN HYPERCUBES:EXAMPLES AND SIMPLE RESULTS

We now illustrate our concepts by numerous examples. We will show how the choice of

muhiprocessor architecture, a job graph, the location of a fault, and a recovery procedure affect the

recovery parameters.

For purposes of illustration, we will use an 8-processor hypercube, Q3, as our

multiprocessor system and we will imbed in that system the pipelines represented by path P4 and

path P5.

In Figure 1 we demonstrate how to determine a resiliency triple, starting with the multiplicity

m. As there are eight processors in Q3, only two jobs requiring 4-processor paths (pipelines) can be

packed and hence executed simultaneously provided there are no faults. Therefore, the multiplicity

m=2.

The next parameter of P4 in Q3 is robustness. Here r = 8 as can be verified from the

definition of r by sliding P4 along a hamiltonian cycle C 8 containing this path. This necessarily

gives different labels to each node. The last parameter in the resiliency triple is the configurability c

which is the number of different ways that P4 can be mapped onto Q3. In the hypercube Q3 it is

apparent that there are only two distinct ways of mapping P4. Therefore, c = 2. In general finding

c is a difficult problem and requires separate treatment [12]. In the following examples, we will

illustrate all eight parameters in the fault recovery vector, FRV.

In Figures 2 through 6 we show a path P4 imbedded in Q3 in different ways with different

faults and different recovery strategies. In the example in Figure 2 we show a path P4 with a faulty
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nodeA at thebeginning of the path. The recoveryprocedureshownin threestagesin Figure 2

minimizestheoverheadonadditionalresourceutilization,wherethedistanced = 2, the timet = 2,

only one additional nodeand edgeareneeded,and only a singlenodeand a single edgewere

evicted.

Anotherway to recoverthis pipelineP4with a faulty beginningnodeis shownin Figure3.

Herethefault recoveryvectorrequiresahigh numberof four additionalnodesandfour additional

edges.Also thenumberof usededgesandevictednodesandedgesis equalto 4. What isoptimized

thoughis thetimewhich is minimum,t = 1.

In Figures4 and5 weshowthesameexampleP4with B asthefaulty node. Thedifferences

here aresignificant. In Figure 4 therecovery overheadis minimized while in the secondcase

illustratedin Figure5 it is therecoveryeffectivenesswhich is optimized.

Next, in Figures6, 7, and8, we extendthepathorderto 5 andshowthereconfigurationof

P5 in the presenceof faulty nodesA, B, C, respectively. Notice that for eachcase,therecovery

vectorsarequitedifferentexceptfor time.

We havedemonstratedhow agiven architecturegraph,pipelinegraph,fault location,and

recoveryproceduremayimpactrecoveryandfault toleranceparameters.

Havingdefined theresiliencytriple andthe fault recoveryvector,we now proceedwith a

generalizedanalysisof resiliencyparametersin ahypercubeQnwith embeddedpipelinePk.

Givena binaryn-cubeQn with p = 2n nodesandq = n2n-1edges,andapipelineof lengthk

representedby apathPk, thefollowing straightforwardresultswereobtained.

4.1 Multiplicity

(1) m(Qn,Pk) = L2n/kJ

Proof. SinceQncontainsahamiltonianpathcontainingall p = 2n nodes,thenumberof pathsof

orderk which arenode-disjointandhencecorrespondto themultiplicity m is asstatedin (1).

4.2 Robustness
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(2) r(Qn, Pk) = 2n

Proof. Since Qn contains a hamiltonian cycle, every node of Pk can be mapped on every node of

Qn by sliding a path Pk along the hamiltonian cycle.

4.3 Configurability

In general the problem of finding c is difficult and special algorithms are required

[12]. Some special cases can be solved. For example for paths in Q3 we have

c(Q3,P3)=I c(Q3,P6)=4

c(Q3,P4)=2 c(Q3,P7)=3

c(Q3,P5)=3 c(Q3,P8)=2

It is interesting to observe that even in such a simple example the configurability

grows monotonically to 4 and then monotonically decreases to 2. For paths P3, P4, and P5 in Q4,

c=l, 1, and 2 respectively.

We have shown some results on the resiliency triple and observe that the value of elements of

the FRV vector depend not only on H and G, but also on the specific location of a fault. (We need

only analyze faults in Pk in nodes numbered from 1 to I-k/2"] because all the remaining cases in the

pipeline are symmetrical and have a buddy among the nodes from 1 to ['k/2"] except for I-k/2"] when

k is odd).

5 CONCLUSIONS

We formalize and quantify various aspects of reliable computing with emphasis on efficient

fault recovery, a relatively neglected area of fault-tolerant computing. We define dependability

qualities of parallel systems with or without a fault. These qualities are determined by the resiliency

triple defined by three parameters: multiplicity, robustness and configurability. We also introduce

parameters measuring the recovery effectiveness in terms of distance, time, the number of new,

used, and moved nodes and edges. In our examples we choose a hypercube as a representative of
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parallelcomputerarchitectureandapipelineasa typicalconfigurationfor programexecution.We

confinetheexamplesto faulty nodes,but, of course,faulty edgesshouldalsobeconsidered.

This comprehensiveframeworkfor fault recoveryshouldaid computerdesignersandusers

in comparingqualityof parallelarchitectures,job configurations,andjob allocationswith respectto

the efficiency of fault recovery. We havealso obtainedsomebasicresultsfor finding optimal

multiplicity androbustnessparametersfor apipeline in ahypercube.Themaincontributionof this

paperis thefact thattheterm "efficient fault recovery"hasbeenformally quantifiedandthiswork

establishesquantifiablegoalsin searchfor efficientrecoveryalgorithms.
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